157 research outputs found

    Photon-Photon Interactions in Dynamically Coupled Cavities

    Full text link
    We study theoretically the interaction between two photons in a nonlinear cavity. The photons are loaded into the cavity via a method we propose here, in which the input/output coupling of the cavity is effectively controlled via a tunable coupling to a second cavity mode that is itself strongly output-coupled. Incoming photon wave packets can be loaded into the cavity with high fidelity when the timescale of the control is smaller than the duration of the wave packets. Dynamically coupled cavities can be used to avoid limitations in the photon-photon interaction time set by the delay-bandwidth product of passive cavities. Additionally, they enable the elimination of wave packet distortions caused by dispersive cavity transmission and reflection. We consider three kinds of nonlinearities, those arising from χ(2)\chi^{\scriptscriptstyle(2)} and χ(3)\chi^{\scriptscriptstyle(3)} materials and that due to an interaction with a two-level emitter. To analyze the input and output of few-photon wave packets we use a Schr\"odinger-picture formalism in which travelling-wave fields are discretized into infinitesimal time-bins. We suggest that dynamically coupled cavities provide a very useful tool for improving the performance of quantum devices relying on cavity-enhanced light-matter interactions such as single-photon sources and atom-like quantum memories with photon interfaces. As an example, we present simulation results showing that high fidelity two-qubit entangling gates may be constructed using any of the considered nonlinear interactions

    Practical high-dimensional quantum key distribution with decoy states

    Get PDF
    High-dimensional quantum key distribution (HD-QKD) allows two parties to generate multiple secure bits of information per detected photon. In this work, we show that decoy state protocols can be practically implemented for HD-QKD using only one or two decoy states. HD-QKD with two decoy states, under realistic experimental constraints, can generate multiple secure bits per coincidence at distances over 200 km and at rates similar to those achieved by a protocol with infinite decoy states. Furthermore, HD-QKD with only one decoy state is practical at short distances, where it is almost as secure as a protocol with two decoy states. HD-QKD with only one or two decoy states can therefore be implemented to optimize the rate of secure quantum communications.Comment: 11 pages, 3 figure

    Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond

    Get PDF
    We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, including preferential orientation within some individual crystal grains, but preserves long spin coherence times. Using the native NVs as nanoscale sensors, we introduce a three-dimensional strain imaging technique with high sensitivity (<10⁻⁔Hz⁻œ) and diffraction-limited resolution across a wide field of view.United States. Office of Naval Research (N00014-13-1-0316)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative I(FA9550-14-1-0052)United States. Air Force Office of Scientific Research (Presidential Early Career Award

    Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    Get PDF
    United States. Air Force Office of Scientific Research (FA8750-13-2-0120

    High-dimensional unitary transformations and boson sampling on temporal modes using dispersive optics

    Get PDF
    A major challenge for postclassical boson sampling experiments is the need for a large number of coupled optical modes, detectors, and single-photon sources. Here we show that these requirements can be greatly eased by time-bin encoding and dispersive optics-based unitary transformations. Detecting consecutively heralded photons after time-independent dispersion performs boson sampling from unitaries for which an efficient classical algorithm is lacking. We also show that time-dependent dispersion can implement general single-particle unitary operations. More generally, this scheme promises an efficient architecture for a range of other linear optics experiments.United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-14-1-0052
    • 

    corecore